US 12,488,267 B2
Shift rule for gradient determination in parameterised quantum evolutions
Dirk Oliver Theis, Tartu (EE)
Assigned to University of Tartu, Tartu (EE)
Filed by University of Tartu, Tartu (EE)
Filed on Jul. 1, 2022, as Appl. No. 17/856,357.
Prior Publication US 2024/0005188 A1, Jan. 4, 2024
Int. Cl. G06N 10/20 (2022.01); G06N 10/80 (2022.01)
CPC G06N 10/20 (2022.01) [G06N 10/80 (2022.01)] 20 Claims
OG exemplary drawing
 
1. A method for performing a parameterised quantum evolution for a quantum system associated with a hybrid computing system having a quantum computing system and a classical computing system, wherein the quantum computing system comprises a quantum system having one or more quantum devices,
the method comprising estimating a derivative of a parameter-dependent physical quantity that is dependent on a first control parameter θ of the parameterised quantum evolution by:
on the classical computing system:
determining a finite sub-multi-set S from the set of shift values

OG Complex Work Unit Math
 wherein K is a bounding value defining the interval [φ−K, φ+K] which contains the Fourier spectrum of an expectation-value function ƒ(θ) of the first parameterised unitary quantum evolution, where φ is a phase-correction value;
determining a finite sub-multi-set of weighting values qs each weighting value corresponding to a shift value s from the sub-multi-set of shift values S;
wherein the sub-multi-set of shift values and the respective sub-multi-set of weighting values are determined in accordance with a targeted probability distribution

OG Complex Work Unit Math
calculating a sub-multi-set of trial control parameter values, each trial control parameter value generated by combining a respective shift value s from the sub-multi-set of shift values S with the first value of the first control parameter θ0;
calculating a sub-multi-set of summation factors ds, each summation factor ds=2πK(−1)2Ks+1/2 for a respective shift value s from the sub-multi-set of shift values S;
for each trial control parameter value:
communicating the trial control parameter value from the classical computing system to the quantum computing system; and
on the quantum computing system:
subjecting the quantum system to a parameterised unitary quantum evolution with the first control parameter of the parameterised unitary quantum evolution set to the trial control parameter value;
making a quantum measurement on the quantum state to obtain a parameter-dependent physical quantity Fs;
communicating the parameter-dependent physical quantity to the classical computing system; and
on the classical computing system:
calculating a phase-corrected measurement result F for each shift value s by calculating Fse−2πi(θ0−s)φ; and
calculating the estimate of the derivative of ƒφ(θ)=e−2πi(θ)φƒ(θ) with respect to the first control parameter through the summation

OG Complex Work Unit Math