CPC H01H 33/668 (2013.01) [H01H 33/664 (2013.01)] | 7 Claims |
1. A vacuum degree detection device with buried electrodes in a vacuum interrupter, wherein:
the vacuum degree detection device is provided on an end cover of the vacuum interrupter (203), and comprises a buried electrode structure (202) and an external detection device (201);
the buried electrode structure (202) comprises a ceramic insulator (107), a buried central emitting electrode (108) and a buried receiving electrode (109) that penetrate and are welded on the ceramic insulator (107); ends of the buried receiving electrode (109) are welded with receiving electrode grids (110); a bottom of the ceramic insulator (107) is welded with an inner shield (111) and an outer shield (112) with a hole structure;
the external detection device (201) is installed after the vacuum interrupter is processed, and comprises: an external detection shell shielding structure (104); a wireless transmitting device (101) fixed on a top of the external detection shell shielding structure (104); and a wireless charging coil (103) welded on an outer wall of the shielding structure (104) of the external detection shell; wherein the wireless charging coil (103) is connected to a charging/storing battery (102) on an inner upper side of the shielding structure (104) of the external detection shell through wires; the charging/storing battery (102) supplies power to a detection and calculation component (105) placed below through the wires; an electrode connection terminal (106) is installed at a lower part of the detection and calculation component (105);
the detection and calculation component (105) comprises an oscillator, a bridge, a current sensor, a voltage sensor, an integrator, a reference, a buffer, an amplifier and a data processor; wherein the charging/storing battery (102) is followed by the oscillator and bridge connected in sequence, a first end of the bridge is connected to the buried central emitting electrode (108), a second end of the bridge is connected to the buried receiving electrode (109), the bridge and the buried electrode structure (202) form a loop, the current sensor is connected in series in the loop, and the voltage sensor is connected in parallel in the loop; the integrator is connected to the current sensor, the voltage sensor and the reference device; the reference device is connected to the buffer and amplifier, and the data processor in turn;
the external detection device (201) and the buried electrode structure (202) are designed in a separate manner, and the ceramic insulator (107), the buried central emitting electrode (108), the buried receiving electrode (109), the receiving electrode grids (110), the inner shield (111) and the outer shield (112) are processed into an integrated body with the vacuum interrupter; when applying the detection, the electrode connection terminals (106) under the detection and calculation component (105) in the external detection device (201) are matched and installed with the buried central emitting electrode (108) and the buried receiving electrode (109) in the buried electrode structure (202).
|