US 12,094,605 B2
System and methods for mammalian transfer learning
Sean Thomas Curtin, Mason, OH (US); Curtis Mitchel Stewart, Mason, OH (US); Ryan Matthew Gilbride, Cleveland, OH (US); Douglas Kirkpatrick, East Lansing, MI (US); and Christopher Iovino, Miami, FL (US)
Assigned to AI:ON Innovations, Inc., Mason, OH (US)
Filed by AI:ON Innovations, Inc., Mason, OH (US)
Filed on Jun. 13, 2023, as Appl. No. 18/209,126.
Application 18/209,126 is a continuation of application No. 17/197,379, filed on Mar. 10, 2021, granted, now 11,705,245.
Claims priority of provisional application 62/987,441, filed on Mar. 10, 2020.
Prior Publication US 2023/0326592 A1, Oct. 12, 2023
This patent is subject to a terminal disclaimer.
Int. Cl. G16H 40/67 (2018.01); G06F 18/214 (2023.01); G06N 3/08 (2023.01); G06V 10/764 (2022.01); G06V 10/82 (2022.01); G16H 30/20 (2018.01)
CPC G16H 40/67 (2018.01) [G06F 18/2148 (2023.01); G06N 3/08 (2013.01); G06V 10/764 (2022.01); G06V 10/82 (2022.01); G16H 30/20 (2018.01)] 19 Claims
OG exemplary drawing
 
1. A method for training a neural network for medical image analysis using mammalian transfer learning, the method comprising:
(a) receiving, by a processor, one or more comparative datasets, wherein each of the one or more comparative datasets comprises labeled image data associated with a species;
(b) creating, by the processor, a mixed domain dataset based on the one or more comparative datasets;
(c) for each image of a plurality of images of the mixed domain dataset:
(i) defining, by the processor, a plurality of chunks within that image, wherein the size of each of the plurality of chunks is selected to obfuscate a species of the source of the image;
(ii) adding, by the processor, the plurality of chunks of that image and any associated labels to a mixed domain training dataset; and
(d) by the processor, and with the neural network:
(i) training the neural network to identify a characteristic of a case study from a target species based on the mixed domain training dataset and the associated labels, wherein the one or more species of the one or more comparative datasets includes at least one species other than the target species; and
(ii) validating the trained neural network based on a validation dataset selected from the mixed domain dataset.