CPC G06F 9/541 (2013.01) [G06F 8/71 (2013.01); G06F 9/54 (2013.01); G06F 9/547 (2013.01); G06F 11/3608 (2013.01); G06F 11/3628 (2013.01); G06F 11/3636 (2013.01); G06F 16/2237 (2019.01); G06F 16/2264 (2019.01); G06F 16/2423 (2019.01); G06F 16/24568 (2019.01); G06F 16/248 (2019.01); G06F 16/254 (2019.01); G06F 16/258 (2019.01); G06F 16/283 (2019.01); G06F 16/285 (2019.01); G06F 16/288 (2019.01); G06F 16/335 (2019.01); G06F 16/90332 (2019.01); G06F 16/90335 (2019.01); G06F 16/9038 (2019.01); G06F 16/906 (2019.01); G06F 16/93 (2019.01); G06F 17/15 (2013.01); G06F 17/16 (2013.01); G06F 17/18 (2013.01); G06F 18/2115 (2023.01); G06F 18/214 (2023.01); G06F 18/2148 (2023.01); G06F 18/217 (2023.01); G06F 18/2193 (2023.01); G06F 18/22 (2023.01); G06F 18/23 (2023.01); G06F 18/24 (2023.01); G06F 18/2411 (2023.01); G06F 18/2415 (2023.01); G06F 18/285 (2023.01); G06F 18/40 (2023.01); G06F 21/552 (2013.01); G06F 21/60 (2013.01); G06F 21/6245 (2013.01); G06F 21/6254 (2013.01); G06F 30/20 (2020.01); G06F 40/117 (2020.01); G06F 40/166 (2020.01); G06F 40/20 (2020.01); G06N 3/04 (2013.01); G06N 3/044 (2023.01); G06N 3/045 (2023.01); G06N 3/06 (2013.01); G06N 3/08 (2013.01); G06N 3/088 (2013.01); G06N 5/00 (2013.01); G06N 5/02 (2013.01); G06N 5/04 (2013.01); G06N 7/00 (2013.01); G06N 7/01 (2023.01); G06N 20/00 (2019.01); G06Q 10/04 (2013.01); G06T 7/194 (2017.01); G06T 7/246 (2017.01); G06T 7/248 (2017.01); G06T 7/254 (2017.01); G06T 11/001 (2013.01); G06V 10/768 (2022.01); G06V 10/993 (2022.01); G06V 30/194 (2022.01); G06V 30/1985 (2022.01); H04L 63/1416 (2013.01); H04L 63/1491 (2013.01); H04L 67/306 (2013.01); H04L 67/34 (2013.01); H04N 21/23412 (2013.01); H04N 21/8153 (2013.01); G06T 2207/10016 (2013.01); G06T 2207/20081 (2013.01); G06T 2207/20084 (2013.01)] | 20 Claims |
1. A system for generating synthetic data, comprising:
one or more memory units storing instructions; and
one or more processors that execute the instructions to perform operations comprising:
receiving a request to generate a synthetic dataset, wherein the request indicates a desired method of data transformation and one or more of a desired statistical measure of the synthetic dataset and a desired data schema of the synthetic dataset;
receiving a dataset comprising time series data;
retrieving a data model based on the request, wherein the data model is trained to generate synthetic data based on a machine-learned relationship between data of at least two dimensions of a transformed dataset;
transforming the dataset by performing a first data transformation to at least a portion of the dataset, the first data transformation comprising:
at least one of an encoding method, a normalization method, or a time-based data processing method; and
a subtraction method on at least one dimension of the dataset;
generating, based on the desired data schema of the synthetic dataset or the desired statistical measure of the synthetic dataset, a synthetic transformed dataset by applying the trained data model to the transformed dataset;
generating the synthetic dataset by performing a second data transformation to the synthetic transformed dataset; and
providing the synthetic dataset for storage in a dataset database.
|