US 12,080,586 B2
Substrate transfer robot for transferring substrate in vacuum chamber
Soo Jong Lee, Suwon-si (KR); Myung Jin Kim, Pyeontaek-si (KR); Chang Seong Lee, Hwaseong-si (KR); Seung Young Baek, Osan-si (KR); Chang Hyun Jee, Anyang-si (KR); Sang Hwi Ham, Gunpo-si (KR); Moon Gi Hur, Suwon-si (KR); Jae Hyun Park, Osan-si (KR); and Tae Han Lee, Yangju-si (KR)
Assigned to T-Robotics Co., Ltd., Osan-si (KR)
Filed by T-Robotics Co., Ltd., Osan-si (KR)
Filed on Apr. 18, 2022, as Appl. No. 17/723,154.
Claims priority of application No. 10-2021-0070274 (KR), filed on May 31, 2021.
Prior Publication US 2022/0384240 A1, Dec. 1, 2022
This patent is subject to a terminal disclaimer.
Int. Cl. H01L 21/687 (2006.01)
CPC H01L 21/68707 (2013.01) 7 Claims
OG exemplary drawing
 
1. A substrate transfer robot for transferring a substrate in a vacuum chamber, comprising:
a transfer arm platform through which a first coupling hole, a second coupling hole and a third coupling hole are formed respectively at a first center area, a first one-end area and a first opposite-end area thereof, wherein a first locking member, through which a first through-hole corresponding to a hollow of a support shaft formed on a transfer robot coupling part of a lower support, compartmentalizes the first coupling hole into a first upper space sealed by a first cover and a first lower space, wherein a second locking member, through which a second through-hole is formed, compartmentalizes the second coupling hole into a second upper space and a second lower space sealed by a second cover, wherein a third locking member, through which a third through-hole is formed, compartmentalizes the third coupling hole into a third upper space and a third lower space sealed by a third cover, wherein a link connecting member including a first blade and a second blade for link connection is fixedly engaged at a front area, with a direction of the front area being a direction of a processing chamber from the substrate transfer robot when the substrate transfer robot is positioned to transfer the substrate to the processing chamber coupled with the vacuum chamber, and wherein the support shaft at the lower support inserted into the first lower space is fixedly engaged with the first locking member;
a first transfer arm part including a (1_1)-st transfer link arm, a (1_2)-nd transfer link arm, a first common link arm, a (1_1)-st subordinate link arm parallel to the (1_1)-st transfer link arm, a (1_2)-nd subordinate link arm parallel to the (1_2)-nd transfer link arm, a (1_3)-rd subordinate link arm parallel to the first common link arm, and a first end effector, wherein a first transfer driving motor and a first speed reducer, interlocked with the first transfer driving motor to reduce a rotational speed of the first transfer driving motor by half, are installed in a sealed inner space of the (1_1)-st transfer link arm, wherein a (1_1)-st drive shaft, having a hollow formed therein and interlocked with the first speed reducer, and a (1_1)-st output shaft interlocked with the (1_1)-st drive shaft are sealingly installed on a (1_1)-st one-end area of the (1_1)-st transfer link arm, wherein a (1_2)-nd drive shaft, having a hollow formed therein and interlocked with the first transfer driving motor, and a (1_2)-nd output shaft interlocked with the (1_2)-nd drive shaft are sealingly installed on a (1_1)-st opposite-end area of the (1_1)-st transfer link arm, wherein the (1_1)-st output shaft of the (1_1)-st transfer link arm is fixedly engaged with a first linking member that is inserted into the second upper space of the transfer arm platform to be fixedly engaged with the second locking member, wherein a (1_2)-nd one-end area of the (1_2)-nd transfer link arm is fixedly engaged with the (1-2)-nd output shaft of the (1_1)-st transfer link arm through a first fixed coupling shaft, wherein a second center area of the first common link arm is rotatably engaged with the first fixed coupling shaft, wherein a (1_4)-th one-end area of the (1_1)-st subordinate link arm is rotatably engaged with the first blade of the link connecting member of the transfer arm platform, and a (1_4)-th opposite-end area of the (1_1)-st subordinate link arm is rotatably engaged with a (1_3)-rd one-end area of the first common link arm, wherein a (1_5)-th one-end area of the (1_2)-nd subordinate link arm is rotatably engaged with a (1_3)-rd opposite-end area of the first common link arm, wherein a (1_6)-th one-end area of the (1_3)-rd subordinate link arm is rotatably engaged with a (1_5)-th opposite-end area of the (1_2)-nd subordinate link arm, and a (1_6)-th opposite-end area of the (1_3)-rd subordinate link arm is rotatably engaged with a (1_2)-nd opposite-end area of the (1_2)-nd transfer link arm, and wherein the first end effector is fixed to the (1_6)-th opposite-end area of the (1_3)-rd subordinate link arm to thereby support the substrate; and
a second transfer arm part including a (2_1)-st transfer link arm, a (2_2)-nd transfer link arm, a second common link arm, a (2_1)-st subordinate link arm parallel to the (2_1)-st transfer link arm, a (2_2)-nd subordinate link arm parallel to the (2_2)-nd transfer link arm, a (2_3)-rd subordinate link arm parallel to the second common link arm, and a second end effector, wherein a second transfer driving motor and a second speed reducer, interlocked with the second transfer driving motor to reduce a rotational speed of the second transfer driving motor by half, are installed in a sealed inner space of the (2_1)-st transfer link arm, wherein a (2_1)-st drive shaft, having a hollow formed therein and interlocked with the second speed reducer, and a (2_1)-st output shaft interlocked with the (2_1)-st drive shaft are sealingly installed on a (2_1)-st one-end area of the (2_1)-st transfer link arm, wherein a (2_2)-nd drive shaft, having a hollow formed therein and interlocked with the second transfer driving motor, and a (2_2)-nd output shaft interlocked with the (2_2)-nd drive shaft are sealingly installed on a (2_1)-st opposite-end area of the (2_1)-st transfer link arm, wherein the (2_1)-st output shaft of the (2_1)-st transfer link arm is fixedly engaged with a second linking member that is inserted into the third upper space of the transfer arm platform to be fixedly engaged with the third locking member, wherein a (2_2)-nd one-end area of the (2_2)-nd transfer link arm is fixedly engaged with the (2-2)-nd output shaft of the (2_1)-st transfer link arm through a second fixed coupling shaft, wherein a third center area of the second common link arm is rotatably engaged with the second fixed coupling shaft, wherein a (2_4)-th one-end area of the (2_1)-st subordinate link arm is rotatably engaged with the second blade of the link connecting member of the transfer arm platform, and a (2_4)-th opposite-end area of the (2_1)-st subordinate link arm is rotatably engaged with a (2_3)-rd one-end area of the second common link arm, wherein a (2_5)-th one-end area of the (2_2)-nd subordinate link arm is rotatably engaged with a (2_3)-rd opposite-end area of the second common link arm, wherein a (2_6)-th one-end area of the (2_3)-rd subordinate link arm is rotatably engaged with a (2_5)-th opposite-end area of the (2_2)-nd subordinate link arm, and a (2_6)-th opposite-end area of the (2_3)-rd subordinate link arm is rotatably engaged with a (2_2)-nd opposite-end area of the (2_2)-nd transfer link arm, and wherein the second end effector is fixed to the (2_6)-th opposite-end area of the (2_3)-rd subordinate link arm to thereby support the substrate,
wherein the lower support comprises an elevating part with an elevating drive shaft that is coaxial with the support shaft at the lower support;
wherein a first coupling hole axis is coaxial with an elevating drive shaft axis.