US 11,696,974 B2
Method for preparing a functionally gradient material for guided periodontal hard and soft tissue regeneration
Jidong Li, Chengdu (CN); Shu'e Jin, Chengdu (CN); Yubao Li, Chengdu (CN); Yi Zuo, Chengdu (CN); and Chen Yuan, Chengdu (CN)
Assigned to Sichuan University, Chengdu (CN)
Appl. No. 16/771,221
Filed by Sichuan University, Chengdu (CN)
PCT Filed Jul. 12, 2019, PCT No. PCT/CN2019/095661
§ 371(c)(1), (2) Date Jun. 10, 2020,
PCT Pub. No. WO2020/237785, PCT Pub. Date Dec. 3, 2020.
Claims priority of application No. 201910465240.1 (CN), filed on May 30, 2019.
Prior Publication US 2021/0402065 A1, Dec. 30, 2021
Int. Cl. B29C 41/22 (2006.01); B29C 64/112 (2017.01); B29C 64/118 (2017.01); B29C 70/68 (2006.01); B29C 70/78 (2006.01); B33Y 10/00 (2015.01); D01D 1/02 (2006.01); D01D 7/00 (2006.01); D01D 11/06 (2006.01); D01F 6/70 (2006.01); D01F 6/84 (2006.01); D01F 6/96 (2006.01); A61L 27/56 (2006.01); A61L 27/46 (2006.01); A61L 27/58 (2006.01); D01F 1/10 (2006.01); D01F 6/92 (2006.01); D04H 1/728 (2012.01); D01D 5/00 (2006.01); B32B 37/14 (2006.01); D01F 6/62 (2006.01); C08L 67/04 (2006.01); C08L 89/00 (2006.01); B29K 67/00 (2006.01); B29K 73/00 (2006.01); B29K 75/00 (2006.01)
CPC A61L 27/56 (2013.01) [A61L 27/46 (2013.01); A61L 27/58 (2013.01); B32B 37/144 (2013.01); D01D 5/003 (2013.01); D01D 5/0038 (2013.01); D01D 5/0084 (2013.01); D01F 1/10 (2013.01); D01F 6/625 (2013.01); D01F 6/92 (2013.01); D04H 1/728 (2013.01); B29K 2005/00 (2013.01); B29K 2067/04 (2013.01); B29K 2067/043 (2013.01); B29K 2067/046 (2013.01); B29K 2073/00 (2013.01); B29K 2075/00 (2013.01); C08L 67/04 (2013.01); C08L 89/00 (2013.01); D10B 2331/04 (2013.01); D10B 2331/041 (2013.01); D10B 2331/10 (2013.01); D10B 2331/30 (2013.01)] 11 Claims
 
1. A method for preparing a functionally gradient material for a guided periodontal hard and soft tissue regeneration, the functionally gradient material comprising a 3D printed scaffold layer and an electrospun fibrous membrane layer, wherein a content of hydroxyapatite in the 3D printed scaffold layer is higher than a content of hydroxyapatite in the electrospun fibrous membrane layer; a pore size of the 3D printed scaffold layer is larger than a pore size of the electrospun fibrous membrane layer; the pore size of the 3D printed scaffold layer is 100 μm-1000 μm; a fiber diameter of the electrospun fibrous membrane layer is 300 nm-5000 nm; the electrospun fibrous membrane layer is in a random distribution or an oriented arrangement or has a mesh structure; and a thickness of the electrospun fibrous membrane layer is 0.08 mm-1 mm,
the method comprising the following steps:
S1, ultrasonically dispersing the hydroxyapatite in a solvent for 1 h-2 h to obtain a dispersion solution, then adding fish collagen and poly (lactic-co-glycolic acid) to the dispersion solution to obtain a mixture, shaking well the mixture for 1.5 h-3 h, and then ultrasonically dispersing the mixture for 0.5 h-1 h to obtain a spinning solution;
S2, stirring the spinning solution obtained in step S1 to evaporate the solvent to obtain a bio-ink;
S3, preparing the electrospun fibrous membrane layer by using the spinning solution obtained in step S1 via an electrospinning; and
S4, placing the electrospun fibrous membrane layer obtained in step S3 on a platform of a 3D bioprinter, and printing on the electrospun fibrous membrane layer by the 3D bioprinter using the bio-ink obtained in step S2 to construct the functionally gradient material compounded by the electrospun fibrous membrane layer with the 3D printed scaffold layer.