US 11,052,353 B2
Catalyst-containing oxygen transport membrane
Zigui Lu, East Amherst, NY (US); Yunxiang Lu, Williamsville, NY (US); Gervase Maxwell Christie, Amherst, NY (US); Jonathan A. Lane, Snyder, NY (US); Pawel J. Plonczak, Amherst, NY (US); and Joseph M. Corpus, Avon, IN (US)
Assigned to Praxair Technology, Inc., Danbury, CT (US)
Appl. No. 16/85,786
Filed by PRAXAIR TECHNOLOGY, INC., Danbury, CT (US)
PCT Filed Mar. 2, 2017, PCT No. PCT/US2017/020408
§ 371(c)(1), (2) Date Sep. 17, 2018,
PCT Pub. No. WO2017/172238, PCT Pub. Date Oct. 5, 2017.
Claims priority of provisional application 62/316,694, filed on Apr. 1, 2016.
Prior Publication US 2019/0022596 A1, Jan. 24, 2019
Int. Cl. B01D 67/00 (2006.01); B01D 69/10 (2006.01); B01D 69/12 (2006.01); C01B 13/02 (2006.01); B01J 37/02 (2006.01); B01J 23/46 (2006.01); B01D 71/02 (2006.01); B01J 35/06 (2006.01); B01J 23/00 (2006.01); B01J 37/00 (2006.01); B01J 23/86 (2006.01); C04B 35/44 (2006.01); C04B 35/462 (2006.01); B32B 18/00 (2006.01); C04B 38/00 (2006.01); C04B 35/01 (2006.01); C04B 35/26 (2006.01); B01J 35/10 (2006.01); B01J 35/02 (2006.01); B01J 35/00 (2006.01); C04B 111/00 (2006.01)
CPC B01D 67/0041 (2013.01) [B01D 69/10 (2013.01); B01D 69/12 (2013.01); B01D 71/024 (2013.01); B01J 23/002 (2013.01); B01J 23/46 (2013.01); B01J 23/462 (2013.01); B01J 23/86 (2013.01); B01J 23/862 (2013.01); B01J 35/002 (2013.01); B01J 35/023 (2013.01); B01J 35/065 (2013.01); B01J 35/1076 (2013.01); B01J 37/0018 (2013.01); B01J 37/0244 (2013.01); B01J 37/0248 (2013.01); B32B 18/00 (2013.01); C01B 13/0255 (2013.01); C04B 35/01 (2013.01); C04B 35/016 (2013.01); C04B 35/2641 (2013.01); C04B 35/44 (2013.01); C04B 35/462 (2013.01); C04B 38/00 (2013.01); B01D 2257/104 (2013.01); B01D 2323/12 (2013.01); B01D 2323/18 (2013.01); B01D 2325/02 (2013.01); B01J 2523/23 (2013.01); B01J 2523/24 (2013.01); B01J 2523/31 (2013.01); B01J 2523/37 (2013.01); B01J 2523/47 (2013.01); B01J 2523/67 (2013.01); B01J 2523/72 (2013.01); B01J 2523/821 (2013.01); B01J 2523/822 (2013.01); B01J 2523/824 (2013.01); B01J 2523/828 (2013.01); B01J 2523/842 (2013.01); B01J 2523/845 (2013.01); B01J 2523/847 (2013.01); C04B 2111/0081 (2013.01); C04B 2111/00801 (2013.01); C04B 2235/3208 (2013.01); C04B 2235/3213 (2013.01); C04B 2235/3224 (2013.01); C04B 2235/3225 (2013.01); C04B 2235/3227 (2013.01); C04B 2235/3229 (2013.01); C04B 2235/3241 (2013.01); C04B 2235/3246 (2013.01); C04B 2235/3274 (2013.01); C04B 2235/3275 (2013.01); C04B 2235/3279 (2013.01); C04B 2235/3289 (2013.01); C04B 2235/442 (2013.01); C04B 2235/443 (2013.01); C04B 2235/5445 (2013.01); C04B 2235/658 (2013.01); C04B 2235/6583 (2013.01); C04B 2235/768 (2013.01); C04B 2235/80 (2013.01); C04B 2237/34 (2013.01); C04B 2237/343 (2013.01); C04B 2237/348 (2013.01); C04B 2237/58 (2013.01); C04B 2237/765 (2013.01)] 18 Claims
OG exemplary drawing
 
1. A method of producing an oxygen ion composite membrane comprising:
forming a first layer on a porous support containing a first mixture of particles of (Ln1−xAx)wCr1−yByO3−δ, doped zirconia, catalyst metal M, and pore formers, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3, y is from about 0.1 to about 0.7, and δ is a value that renders the composition charge neutral, catalyst metal M is a catalyst metal or an oxide, carbonate or nitrate of a catalyst metal, wherein said catalyst metal is Ru:
the first mixture containing the (Ln1−xAx)wCr1−yByO3−δ, the doped zirconia and the catalyst metal M such that when sintered, the first layer will contain from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ, from about 30 vol. % to about 80 vol. % of the doped zirconia, and from about 0.1 vol. % to about 20 vol. % of the catalyst metal M, based on the volume percentage of the total solid mass;
forming a second layer on the first layer that contains a second mixture of particles of (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia and that does not contain pore formers, where Ln is La, Y, Pr, Ce or Sm, A is Ca or Sr, B is Fe, Mn, Co, Ni, Al, Ti or combinations thereof, w is from about 0.9 to about 1.0, x is from about 0.1 to about 0.3 and y is from about 0.1 to about 0.7 and δ is a value that renders the composition charge neutral;
the second mixture containing the (Ln1−xAx)wCr1−yByO3−δ and the doped zirconia such that when sintered, the second layer will contain from about 20 vol. % to about 70 vol. % of the (Ln1−xAx)wCr1−yByO3−δ and from about 30 vol. % to about 80 vol. % of the doped zirconia, based on the volume percentages of the total solid mass;
heating the first layer, the second layer and the porous support so that said first layer partially sinters into a porous mass containing the first mixture of particles, thereby to provide a porous fuel oxidation layer and the second layer fully sinters into a densified mass containing the second mixture of particles, thereby to provide a dense separation layer.