US 11,993,864 B2
Silicon carbide magnetometer and associated material formation methods
John B. Abraham, Baltimore, MD (US); Brian D. Clader, Ellicott City, MD (US); Robert Osiander, Columbia, MD (US); Cameron A. Gutgsell, Laurel, MD (US); Dalibor J. Todorovski, Columbia, MD (US); Scott A. Sperling, Baltimore, MD (US); Jacob E. Epstein, Takoma Park, MD (US); Timothy M. Sweeney, Fulton, MD (US); Elizabeth A. Pogue, Laurel, MD (US); and Tyrel M. McQueen, Baltimore, MD (US)
Assigned to The Johns Hopkins University, Baltimore, MD (US)
Filed by The Johns Hopkins University, Baltimore, MD (US)
Filed on Nov. 2, 2021, as Appl. No. 17/516,956.
Claims priority of provisional application 63/109,503, filed on Nov. 4, 2020.
Prior Publication US 2022/0136135 A1, May 5, 2022
Int. Cl. C30B 33/02 (2006.01); C30B 29/36 (2006.01); C30B 33/04 (2006.01); G01R 33/032 (2006.01)
CPC C30B 33/02 (2013.01) [C30B 29/36 (2013.01); C30B 33/04 (2013.01); G01R 33/032 (2013.01)] 8 Claims
OG exemplary drawing
 
1. A method for forming a silicon carbide material with a plurality of negatively charged silicon mono-vacancy defects, the method comprising:
irradiating a silicon carbide sample to form an irradiated silicon carbide sample;
annealing the irradiated silicon carbide sample in an annealing operation to form an annealed silicon carbide sample; and
quenching the annealed silicon carbide sample, wherein the quenching comprises heating the annealed silicon carbide sample to a maximum temperature and quenching the annealed silicon carbide sample to form the silicon carbide sample with the plurality of negatively charged silicon mono-vacancy defects;
wherein the silicon carbide sample exhibits a photoluminescence spectra with zero photon lines at about 1445, 1440, and 1354 millielectronvolts at temperatures below 10 Kelvin.