US 12,283,995 B2
Cryogenic waveform source
Antti Kemppinen, Espoo (FI); Jaani Nissilä, Espoo (FI); Jukka Viheriälä, Lempäälä (FI); and Joonas Govenius, Espoo (FI)
Assigned to Teknologian tutkimuskeskus VTT Oy, Espoo (FI)
Appl. No. 18/001,901
Filed by Teknologian tutkimuskeskus VTT Oy, Espoo (FI)
PCT Filed Jun. 16, 2021, PCT No. PCT/FI2021/050456
§ 371(c)(1), (2) Date Dec. 15, 2022,
PCT Pub. No. WO2021/255344, PCT Pub. Date Dec. 22, 2021.
Claims priority of application No. 20205635 (FI), filed on Jun. 16, 2020.
Prior Publication US 2023/0231631 A1, Jul. 20, 2023
Int. Cl. H04B 10/508 (2013.01); G06N 10/40 (2022.01); H01L 27/144 (2006.01); H03K 3/42 (2006.01); H04B 10/516 (2013.01); H04B 10/70 (2013.01); H10N 69/00 (2023.01)
CPC H04B 10/508 (2013.01) [G06N 10/40 (2022.01); H03K 3/42 (2013.01); H04B 10/516 (2013.01); H04B 10/70 (2013.01); H01L 27/1443 (2013.01); H01L 27/1446 (2013.01); H10N 69/00 (2023.02)] 15 Claims
OG exemplary drawing
 
1. A method for providing an electric waveform, the method comprising:
providing a first optical signal, which comprises one or more sequences of optical pulses,
guiding the first optical signal into a cryogenic chamber,
distributing the optical pulses of the first optical signal via optical waveguides to two or more optical-to-electrical converter devices, and
converting the optical pulses of the first optical signal into electric pulses inside the cryogenic chamber by using the optical-to-electrical converter devices,
wherein an internal temperature inside the cryogenic chamber is lower than 20 Kelvin.