US 12,272,659 B2
Methods for forming metal gapfill with low resistivity
Yi Xu, San Jose, CA (US); Yu Lei, Belmont, CA (US); Zhimin Qi, Fremont, CA (US); Aixi Zhang, Sunnyvale, CA (US); Xianyuan Zhao, Santa Clara, CA (US); Wei Lei, Campbell, CA (US); Xingyao Gao, Sunnyvale, CA (US); Shirish A. Pethe, Cupertino, CA (US); Tao Huang, San Jose, CA (US); Xiang Chang, San Jose, CA (US); Patrick Po-Chun Li, Sunnyvale, CA (US); Geraldine Vasquez, San Jose, CA (US); Dien-yeh Wu, San Jose, CA (US); and Rongjun Wang, Dublin, CA (US)
Assigned to APPLIED MATERIALS, INC., Santa Clara, CA (US)
Filed by Applied Materials, Inc., Santa Clara, CA (US)
Filed on Sep. 14, 2022, as Appl. No. 17/944,596.
Prior Publication US 2024/0088071 A1, Mar. 14, 2024
Int. Cl. H01L 23/00 (2006.01)
CPC H01L 24/03 (2013.01) [H01L 24/05 (2013.01); H01L 2224/03452 (2013.01); H01L 2224/03845 (2013.01); H01L 2224/05026 (2013.01); H01L 2224/05082 (2013.01); H01L 2224/05157 (2013.01); H01L 2224/05184 (2013.01); H01L 2924/01027 (2013.01); H01L 2924/01074 (2013.01); H01L 2924/04941 (2013.01); H01L 2924/0496 (2013.01); H01L 2924/059 (2013.01); H01L 2924/35121 (2013.01)] 20 Claims
OG exemplary drawing
 
1. A method for reducing resistivity of metal gapfill, comprising:
depositing a conformal layer in an opening of a feature and on a field of a substrate, wherein a first thickness of the conformal layer is approximately 10 microns or less;
depositing a non-conformal metal layer directly on the conformal layer at a bottom of the opening and directly on the field using an anisotropic deposition process, wherein a second thickness of the non-conformal metal layer on the field and on the bottom of the feature is approximately 30 microns or greater; and
depositing a metal gapfill material in the opening of the feature and on the field, wherein the metal gapfill material completely fills the opening without any voids.