US 11,901,648 B2
Multi-frequency and multi-beam independent electrically adjustable antenna
Hongzhen Zheng, Foshan (CN); Qiang Zhu, Foshan (CN); Yongchao Lu, Foshan (CN); Guodong Wang, Foshan (CN); Chunhui Shang, Foshan (CN); Yashan Huang, Foshan (CN); Weixiong Qian, Foshan (CN); Chongxuan Deng, Foshan (CN); Yong Yu, Foshan (CN); Yongping Huang, Foshan (CN); and Shichao Yang, Foshan (CN)
Assigned to FOSHAN EAHISON COMMUNICATION CO., LTD., Foshan (CN); and GUANGDONG FUSHUN TIANJI COMMUNICATION CO., LTD., Foshan (CN)
Filed by FOSHAN EAHISON COMMUNICATION CO., LTD., Foshan (CN); and GUANGDONG FUSHUN TIANJI COMMUNICATION CO., LTD., Foshan (CN)
Filed on May 16, 2023, as Appl. No. 18/318,494.
Claims priority of application No. 202210571599.9 (CN), filed on May 25, 2022.
Prior Publication US 2023/0387592 A1, Nov. 30, 2023
Int. Cl. H01Q 5/45 (2015.01); H01Q 15/23 (2006.01); H01Q 21/28 (2006.01); H01Q 15/18 (2006.01); H01Q 3/32 (2006.01); H01Q 15/02 (2006.01)
CPC H01Q 5/45 (2015.01) [H01Q 3/32 (2013.01); H01Q 15/02 (2013.01); H01Q 15/18 (2013.01); H01Q 15/23 (2013.01); H01Q 21/28 (2013.01)] 8 Claims
OG exemplary drawing
 
1. A multi-frequency and multi-beam independent electrically adjustable antenna, comprising: a first electromagnetic lens, a second electromagnetic lens, a mounting plate, a reflecting plate, a first oscillator unit to a thirty-second oscillator unit, a thirty-third oscillator unit to a fortieth oscillator unit, and a first phase shifter to a twelfth phase shifter; wherein,
the reflecting plate is bent to form a first reflecting surface, a second reflecting surface, a third reflecting surface and a fourth reflecting surface, the first reflecting surface, the second reflecting surface, the third reflecting surface and the fourth reflecting surface are successively connected to form a wrap angle;
the first electromagnetic lens and the second electromagnetic lens are both cylindrical lenses, the first electromagnetic lens and the second electromagnetic lens are both partially positioned in the wrap angle, and a central axis of the first electromagnetic lens is collinear with a central axis of the second electromagnetic lens;
the first electromagnetic lens, the second electromagnetic lens, the reflecting plate and the mounting plate are fixed relative to each other, and the mounting plate is on a side of the reflecting plate facing away from the first electromagnetic lens and the second electromagnetic lens;
the first oscillator unit to the thirty-second oscillator unit are oscillators with a same operating frequency, and the thirty-third oscillator unit to the fortieth oscillator unit are oscillators with a same operating frequency; wherein the operating frequency of each of the first oscillator unit to the thirty-second oscillator unit is higher than the operating frequency of each of the thirty-third oscillator unit to the fortieth oscillator unit;
the first oscillator unit to the eighth oscillator unit are all mounted on the first reflecting surface, the first oscillator unit to the eighth oscillator unit are arranged in sequence along a first straight line, each of the first oscillator unit to the fourth oscillator unit is set to have a signal receiving and transmitting direction towards the first electromagnetic lens and perpendicular to the central axis of the first electromagnetic lens, and each of the fifth oscillator unit to the eighth oscillator unit is set to have a signal receiving and transmitting direction towards the second electromagnetic lens and perpendicular to the central axis of the second electromagnetic lens;
the ninth oscillator unit to the sixteenth oscillator unit are all mounted on the second reflecting surface, the ninth oscillator unit to the sixteenth oscillator unit are arranged in sequence along a second straight line, each of the ninth oscillator unit to the twelfth oscillator unit is set to have a signal receiving and transmitting direction towards the first electromagnetic lens and perpendicular to the central axis of the first electromagnetic lens, and each of the thirteenth oscillator unit to the sixteenth oscillator unit is set to have a signal receiving and transmitting direction towards the second electromagnetic lens and perpendicular to the central axis of the second electromagnetic lens;
the seventeenth oscillator unit to the twenty-fourth oscillator unit are all mounted on the third reflecting surface, the seventeenth oscillator unit to the twenty-fourth oscillator unit are arranged in sequence along a third straight line, each of the seventeenth oscillator unit to the twentieth oscillator unit is set to have a signal receiving and transmitting direction towards the first electromagnetic lens and perpendicular to the central axis of the first electromagnetic lens, and each of the twenty-first oscillator unit to the twenty-fourth oscillator unit is set to have a signal receiving and transmitting direction towards the second electromagnetic lens and perpendicular to the central axis of the second electromagnetic lens;
the twenty-fifth oscillator unit to the thirty-second oscillator unit are all mounted on the fourth reflecting surface, the twenty-fifth oscillator unit to the thirty-second oscillator unit are arranged in sequence along a fourth straight line, each of the twenty-fifth oscillator unit to the twenty-eighth oscillator unit is set to have a signal receiving and transmitting direction towards the first electromagnetic lens and perpendicular to the central axis of the first electromagnetic lens, and each of the twenty-ninth oscillator unit to the thirty-second oscillator unit is set to have a signal receiving and transmitting direction towards the second electromagnetic lens and perpendicular to the central axis of the second electromagnetic lens;
the thirty-third oscillator unit to thirty-sixth oscillator unit are all mounted on the reflecting plate, the thirty-third oscillator unit to thirty-sixth oscillator unit are arranged in sequence along a first side formed by connecting the first reflecting surface and the second reflecting surface, and each of the thirty-third oscillator unit and thirty-fourth oscillator unit is set to have a signal receiving and transmitting direction towards the first electromagnetic lens and perpendicular to the central axis of the first electromagnetic lens, and each of the thirty-fifth oscillator unit and thirty-sixth oscillator unit is set to have a signal receiving and transmitting direction towards the second electromagnetic lens and perpendicular to the central axis of the second electromagnetic lens;
the thirty-seventh oscillator unit to fortieth oscillator unit are all mounted on the reflecting plate, the thirty-seventh oscillator unit to fortieth oscillator unit are arranged in sequence along a second side formed by connecting the third reflecting surface and the fourth reflecting surface, the first, second, third and fourth straight lines and the first and second sides are all parallel to the central axis of the first electromagnetic lens, and each of the thirty-seventh oscillator unit and thirty-eighth oscillator unit is set to have a signal receiving and transmitting direction towards the first electromagnetic lens and perpendicular to the central axis of the first electromagnetic lens, and each of the thirty-ninth oscillator unit and fortieth oscillator unit is set to have a signal receiving and transmitting direction towards the second electromagnetic lens and perpendicular to the central axis of the second electromagnetic lens;
the first phase shifter to the twelfth phase shifter are all mounted on the mounting plate, the first oscillator unit to the fourth oscillator unit are all electrically connected to an output end of the first phase shifter to form 2 Transmit 2 Receive (2T2R), the fifth oscillator unit to the eighth oscillator unit are all electrically connected to an output end of the second phase shifter to form 2T2R, so that the first oscillator unit to the eighth oscillator unit form 4 Transmit 4 Receive (4T4R); the ninth oscillator unit to the twelfth oscillator unit are all electrically connected to an output end of the third phase shifter to form 2T2R, the thirteenth oscillator unit to the sixteenth oscillator unit are all electrically connected to an output end of the fourth phase shifter to form 2T2R, so that the ninth oscillator unit to the sixteenth oscillator unit form 4T4R; the seventeenth oscillator unit to the twentieth oscillator unit are all electrically connected to an output end of the fifth phase shifter to form 2T2R, the twenty-first oscillator unit to the twenty-fourth oscillator unit are all electrically connected to an output end of the sixth phase shifter to form 2T2R, so that the seventeenth oscillator unit to the twenty-fourth oscillator unit form 4T4R; the twenty-fifth oscillator unit to the twenty-eighth oscillator unit are all electrically connected to an output end of the seventh phase shifter to form 2T2R, the twenty-ninth oscillator unit to the thirty-second oscillator unit are all electrically connected to an output end of the eighth phase shifter to form 2T2R, so that the twenty-fifth oscillator unit to the thirty-second oscillator unit form 4T4R; the thirty-third oscillator unit and thirty-fourth oscillator unit are both electrically connected to an output end of the ninth phase shifter to form 2T2R, the thirty-fifth oscillator unit and thirty-sixth oscillator unit are both electrically connected to an output end of the tenth phase shifter to form 2T2R, so that the thirty-third oscillator unit to thirty-sixth oscillator unit form 4T4R; the thirty-seventh oscillator unit and thirty-eighth oscillator unit are both electrically connected to an output end of the eleventh phase shifter to form 2T2R, the thirty-ninth oscillator unit and fortieth oscillator unit are both electrically connected to an output end of the twelfth phase shifter to form 2T2R, so that thirty-seventh oscillator unit to fortieth oscillator unit form 4T4R;
the first phase shifter is linked with the second phase shifter through a first push component; the third phase shifter is linked with the fourth phase shifter through a second push component; the fifth phase shifter is linked with the sixth phase shifter through a third push component; the seventh phase shifter is linked with the eighth phase shifter through a fourth push component; the ninth phase shifter is linked with the tenth phase shifter through a fifth push component; the eleventh phase shifter is linked with the twelfth phase shifter through a sixth push component;
the first push component, the second push component, the third push component, the fourth push component, the fifth push component and the sixth push component are all slidably mounted on the mounting plate; a sliding direction of each of the first push component, the second push component, the third push component, the fourth push component, the fifth push component and the sixth push component relative to the mounting plate is parallel to the central axis of the first electromagnetic lens; each of the first push component, the second push component, the third push component, the fourth push component, the fifth push component and the sixth push component is driven by a separate screw drive mechanism to slide relative to the mounting plate; each screw drive mechanism comprises a screw, a sliding block, a guide rod and a drive unit; both ends of the screw are rotationally mounted on the mounting plate, and a central axis of the screw is parallel to the central axis of the first electromagnetic lens; both ends of the guide rod are mounted on the mounting plate, and a central axis of the guide rod is parallel to the central axis of the screw; a screw hole and a guide hole are formed on the sliding block, the screw hole of the sliding block is connected to threads of the screw, and the guide hole of the sliding block is fitted with the guide rod; the drive unit is mounted on the mounting plate and used to drive the screw to rotate; each of the first push component, the second push component, the third push component, the fourth push component, the fifth push component and the sixth push component is connected with a sliding block of its corresponding screw drive mechanism;
the screw drive mechanism further comprises a limiting assembly, the limiting assembly comprises a sheathing component and a clamping component, the sheathing component is provided with a sheathing hole, a clamping ring groove is formed on an outer circumferential surface of the sheathing component, the sheathing component is further provided with a through hole connecting the clamping ring groove to the wall of the sheathing hole, and the sheathing component is sheathed on the screw through its sheathing hole; a plurality of pin holes are set on the screw, and the plurality of pin holes are arranged along the axis of the screw; the clamping component is a semi-enclosed ring-shaped component, a locating pin is formed on the inner surface of the clamping component, the clamping component is clamped in the clamping ring groove of the sheathing component, and a locating pin of the clamping component is inserted through the through hole of the sheathing component into the pin hole of the screw; a first blocking part is arranged on the screw, and the sliding block is positioned between the limiting assembly and the first blocking part; a second blocking part is formed on an end face of the sheathing component facing the sliding block, and a first pressing-against part cooperating with the first blocking part is formed on an end face of the sliding block facing the first blocking part, and a second pressing-against part cooperating with the second blocking part is formed on an end face of the sliding block facing the sheathing component.