CPC G01N 21/31 (2013.01) [G01J 3/28 (2013.01); G01J 2003/2866 (2013.01); G01N 2201/127 (2013.01)] | 30 Claims |
1. A method for determining and using standardized analyzer spectral responses to enhance a process for calibration of a spectroscopic analyzer when a spectroscopic analyzer changes from a first state to a second state, the second state being defined as a period of time after a change to the spectroscopic analyzer causing a need to calibrate or recalibrate the spectroscopic analyzer, the method comprising:
analyzing, via the spectroscopic analyzer when in the first state, a selected plurality of multi-component samples to output first-state sample spectra, the analyzing of the selected plurality of multi-component samples occurring during a first-state time period;
determining one or more spectral models based at least in part on the first-state sample spectra and corresponding sample data;
analyzing, via the spectroscopic analyzer when in the first state, a selected one or more first-state portfolio samples to output a standardized analyzer spectra portfolio for the selected one or more first-state portfolio samples, the standardized analyzer spectra portfolio comprising a first-state portfolio sample spectrum for each of the first-state portfolio samples;
analyzing, via a spectroscopic analyzer when in the second state, a selected one or more second-state portfolio samples to output second-state portfolio sample spectra for the selected one or more second-state portfolio samples, each of the second-state portfolio sample spectra being associated with a corresponding second-state portfolio sample, the analyzing of the selected one or more second-state portfolio samples occurring during a second-state time period, the multi-component samples including a greater number of samples than a number of samples included in the second-state portfolio samples, and the second-state time period for analyzing the second-state portfolio samples being less than the first-state time period;
comparing one or more of the second-state portfolio sample spectra for the selected one or more second-state portfolio samples to one or more of the first-state portfolio sample spectra of the standardized analyzer spectra portfolio corresponding to first-state portfolio samples of the spectroscopic analyzer as analyzed and output when in the first state during the first-state time period;
determining, based at least in part on the comparing, for the one or more of the selected one or more second-state portfolio samples of the second-state portfolio sample spectra, a variance at one or more of a plurality of wavelengths or over a range of wavelengths between the second-state portfolio sample spectra output by the spectroscopic analyzer when in the second state and the first-state portfolio sample spectra of the standardized analyzer spectra portfolio, the standardized analyzer spectra portfolio to be used to reduce the variance between the second-state portfolio sample spectra and the first-state portfolio sample spectra;
analyzing, via the spectroscopic analyzer when in the second state, a material received from a material source to output a material spectrum, the material received from the material source comprising one of a feed to a material processing unit or a product of a material processing unit;
transforming, based at least in part on the standardized analyzer spectra portfolio, the material spectrum to output a corrected material spectrum for the material when in the second state, the corrected material spectrum including one or more of an absorption-corrected spectrum, a transmittance-corrected spectrum, a transflectance-corrected spectrum, a reflectance-corrected spectrum, or an intensity-corrected spectrum and defining a standardized spectrum;
predicting, based at least in part on the corrected material spectrum, material data associated with the material; and
controlling, based at least in part on the predicted material data, the material processing unit.
|