US 11,808,632 B2
Self-cooled four-shaft turbine panoramic temperature measuring device
Chao Wang, Sichuan (CN); Jing Jiang, Sichuan (CN); Yi Niu, Sichuan (CN); Anmei Qiu, Sichuan (CN); Zezhan Zhang, Sichuan (CN); Peifeng Yu, Sichuan (CN); Guiyun Tian, Sichuan (CN); and Shan Gao, Sichuan (CN)
Assigned to University of Electronic Science and Technology of China, Sichuan (CN)
Filed by University of Electronic Science and Technology of China, Sichuan (CN)
Filed on Jul. 28, 2021, as Appl. No. 17/387,527.
Claims priority of application No. 202010806727.4 (CN), filed on Aug. 12, 2020.
Prior Publication US 2022/0099496 A1, Mar. 31, 2022
Int. Cl. G01J 5/00 (2022.01); G01J 5/04 (2006.01)
CPC G01J 5/0088 (2013.01) [G01J 5/048 (2013.01); F05D 2260/232 (2013.01)] 1 Claim
OG exemplary drawing
 
1. A self-cooled four-shaft turbine panoramic temperature measuring device, comprising: a probe, a cooling device, a driving device and a probe casing, wherein: one end of the probe extends into the probe casing, and the other end of the probe is protruding; the cooling device is arranged at a connection part between the probe and the probe casing, for cooling the probe; the driving device is arranged inside the probe casing, for driving the probe to move; the probe comprises a probe cover, a sight pipe, a light pipe, and an optical lens set, wherein: the probe cover is arranged at an outermost portion of the probe, for protecting internal optical components of the probe; the sight pipe is arranged inside the probe cover, and the light pipe is welded inside the sight pipe; the sight pipe further protects the internal light pipe, which prevents the light pipe from directly contacting with a high-temperature airflow and contaminated particles; and the optical lens set is fastened inside the light pipe to form an optical system of a detection device, so that light is introduced from a turbine blade and detected; a rear end of the probe is connected to the driving device; the driving device comprises a swinging drive module, a rotation drive module, and a translational drive module, wherein: the rotation drive module drives the swinging drive module and the probe; and the translational drive module drives the rotation drive module, the swinging drive module and the probe; the optical lens set comprises a mirror, wherein the mirror is arranged at a tail end of the probe and hinged with the tail end of the probe through a mirror pin;
the cooling device comprises water-cooling pipelines, a connecting plate, a mounting flange plate, a cooling stage and a cooling pond, wherein: the water-cooling pipelines are connected to the cooling stage; each of the water-cooling pipelines comprises an inlet pipe and an outlet pipe, and totally five water-cooling pipelines are arranged on one side of the cooling stage; one end of each water-cooling pipeline is connected to a cooling cavity of the cooling stage where cooling water is circulated; adjacent cooling cavities are separated with a separation column; the other end of each water-cooling pipeline is connected to the cooling pond; through the water-cooling pipelines, hot water in each cooling cavity is pumped into the cooling pond and cooled; the cooled water is pumped into each cooling cavity again to keep cooling the probe, so that a water-cooling circulation is formed for continuously cooling the probe; the cooling pond is separated into five independent parts which are respectively connected to the five water-cooling pipelines to provide five water-cooling circulations at the same time; one end of the cooling stage is connected to the connecting plate which connects the cooling device with the probe casing; and the other end of the cooling stage is connected to the mounting flange plate which mounts the whole temperature measuring device on an engine casing;
the swinging drive module comprises a motor gear component, a swinging table, an optical adaptor, a swinging connecting flange, a push rod, and a push rod assembling part, wherein: one end of the swinging connecting flange is fixed on a disc flange of the rotation drive module, and the other end of the swinging connecting flange is fixed with a probe flange through a cushion; the probe flange is fixed with the probe; a light exit end of the probe is connected to a rotation optical sleeve of the rotation drive module through the optical adaptor; the probe, the optical adaptor, the rotation optical sleeve and an infrared detector are coaxially arranged; an output section of the motor gear component is connected to the swinging table, so that the swinging table is movable along a length direction of the probe; the swinging table is connected to one end of the push rod, and the other end of the push rod is connected to the push rod assembling part; the push rod is arranged inside the probe cover; the push rod assembling part is connected to the mirror through a push rod pin;
the rotation drive module comprises a rotation table, a rotation motor, a rotation table mounting plate, the rotation optical sleeve, the infrared detector and a detector mounting plate, wherein: a lower surface of the rotation table mounting plate is fixed on a sliding table of the translational drive module; the rotation motor is arranged on an upper surface of the rotation table mounting plate at an edge of one side along a movement direction of the sliding table of the translational drive module; the infrared detector is arranged on a rest part of the upper surface of the rotation table mounting plate through the detector mounting plate; a detection point of the infrared detector is located on a translational axis of the rotation table mounting plate; the rotation table has a hollow circular portion, and a gear engagement component is arranged inside the hollow circular portion; one side of the hollow circular portion of the rotation table is connected to an output shaft of the rotation shaft, and the rotation motor drives the gear engagement component inside the rotation table to rotate; the disc flange is arranged at the other side of the rotation table, and a light transmitting hole is provided at a center of the disc flange; when the rotation motor drives the gear engagement component to rotate, the disc flange rotates with the gear engagement component; the disc flange is connected to the swinging drive module through bolts; one end of the rotation optical sleeve is connected to the infrared detector, and the other end of the rotation optical sleeve passes through the hollow circular portion of the rotation table;
the translational drive module comprises a high-inertia servo motor, a plum coupling, a screw, the sliding table, limit switches and a sliding table base, wherein: one end of the plum coupling is connected to an output shaft of the high-inertia servo motor, and the other end of the plum coupling is connected to one end of the screw; the other end of the screw passes through the sliding table; the sliding table is placed in the sliding table base; the limit switches are arranged on inner sides of the sliding table base, respectively corresponding to initial and final positions of translation of the sliding table; the high-inertia servo motor drives the screw to rotate through the plum coupling, and the sliding table axially moves along the screw; once the sliding table contacts with the limit switches, a reverse drive is given to the high-inertia servo motor immediately, so that the sliding table moves reversely.