US 11,684,978 B2
Build material composition
Vladek Kasperchik, Corvallis, OR (US); Mohammed S. Shaarawi, Corvallis, OR (US); James McKinnell, Corvallis, OR (US); and Tienteh Chen, San Diego, CA (US)
Assigned to Hewlett-Packard Development Company, L.P., Spring, TX (US)
Appl. No. 16/604,802
Filed by HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., Spring, TX (US)
PCT Filed Apr. 26, 2018, PCT No. PCT/US2018/029630
§ 371(c)(1), (2) Date Oct. 11, 2019,
PCT Pub. No. WO2019/177642, PCT Pub. Date Sep. 19, 2019.
Application 16/604,802 is a continuation in part of application No. PCT/US2018/028341, filed on Apr. 19, 2018.
Application PCT/US2018/028341 is a continuation in part of application No. PCT/US2018/027286, filed on Apr. 12, 2018.
Application PCT/US2018/027286 is a continuation in part of application No. PCT/US2018/022684, filed on Mar. 15, 2018.
Prior Publication US 2020/0398338 A1, Dec. 24, 2020
Int. Cl. B22F 1/10 (2022.01); B22F 10/73 (2021.01); B33Y 10/00 (2015.01); B33Y 40/10 (2020.01); B33Y 70/10 (2020.01); C08F 2/22 (2006.01); C08F 212/08 (2006.01); C08F 220/14 (2006.01); C09D 11/037 (2014.01); C09D 11/322 (2014.01); C09D 11/38 (2014.01); B29C 64/165 (2017.01); B22F 10/14 (2021.01); C08K 3/11 (2018.01); B22F 1/05 (2022.01); B22F 1/102 (2022.01); B22F 1/16 (2022.01); B22F 10/10 (2021.01); B82Y 30/00 (2011.01); B22F 10/28 (2021.01)
CPC B22F 10/73 (2021.01) [B22F 1/05 (2022.01); B22F 1/10 (2022.01); B22F 1/102 (2022.01); B22F 1/16 (2022.01); B22F 10/10 (2021.01); B22F 10/14 (2021.01); B29C 64/165 (2017.08); B33Y 10/00 (2014.12); B33Y 40/10 (2020.01); B33Y 70/10 (2020.01); C08F 2/22 (2013.01); C08F 212/08 (2013.01); C08F 220/14 (2013.01); C08K 3/11 (2018.01); C09D 11/037 (2013.01); C09D 11/322 (2013.01); C09D 11/38 (2013.01); B22F 10/28 (2021.01); B22F 2304/10 (2013.01); B22F 2998/10 (2013.01); B82Y 30/00 (2013.01)] 19 Claims
OG exemplary drawing
 
1. A method for making a build material composition for three-dimensional (3D) printing, comprising:
freezing a dispersion of flow additive nanoparticles in a liquid at a temperature of from 0° C. to −17° C. to form a frozen liquid containing the flow additive nanoparticles;
lyophilizing the frozen liquid containing the flow additive nanoparticles in a vacuum chamber starting at a temperature of about −40° C. to about −50° C., thereby forming flow additive agglomerates having a porous, fractal structure; and
mixing the flow additive agglomerates with a host metal;
wherein the flow additive nanoparticles have an average flow additive particle size ranging from about 1 to about 3 orders of magnitude smaller than an average host metal particle size of the host metal.