US 11,684,431 B2
Surgical robot platform
Neil R. Crawford, Chandler, AZ (US); Nicholas Theodore, Paradise Valley, AZ (US); and Mitchell A. Foster, Scottsdale, AZ (US)
Assigned to Globus Medical, Inc., Audubon, PA (US)
Filed by GLOBUS MEDICAL, INC., Audubon, PA (US)
Filed on Mar. 23, 2017, as Appl. No. 15/467,005.
Application 15/467,005 is a continuation of application No. 13/924,505, filed on Jun. 21, 2013, granted, now 9,782,229.
Claims priority of provisional application 61/800,527, filed on Mar. 15, 2013.
Claims priority of provisional application 61/662,702, filed on Jun. 21, 2012.
Prior Publication US 2017/0252112 A1, Sep. 7, 2017
Int. Cl. A61B 34/30 (2016.01); A61B 5/06 (2006.01); A61B 10/02 (2006.01); A61N 1/05 (2006.01); A61B 34/00 (2016.01); A61B 90/14 (2016.01); A61B 90/00 (2016.01); B25J 9/10 (2006.01); A61B 90/96 (2016.01); A61B 90/98 (2016.01); A61B 17/02 (2006.01); A61B 17/16 (2006.01); A61B 34/32 (2016.01); A61B 34/20 (2016.01); A61B 46/20 (2016.01); A61B 50/13 (2016.01); A61B 17/88 (2006.01); A61B 17/17 (2006.01); A61B 34/10 (2016.01); A61B 17/70 (2006.01); A61M 5/172 (2006.01); A61B 90/11 (2016.01); A61B 17/00 (2006.01)
CPC A61B 34/30 (2016.02) [A61B 5/061 (2013.01); A61B 5/062 (2013.01); A61B 5/066 (2013.01); A61B 10/02 (2013.01); A61B 10/0233 (2013.01); A61B 10/0275 (2013.01); A61B 17/025 (2013.01); A61B 17/1615 (2013.01); A61B 17/1671 (2013.01); A61B 17/1703 (2013.01); A61B 17/1757 (2013.01); A61B 17/7082 (2013.01); A61B 17/8866 (2013.01); A61B 34/10 (2016.02); A61B 34/20 (2016.02); A61B 34/25 (2016.02); A61B 34/32 (2016.02); A61B 34/70 (2016.02); A61B 34/74 (2016.02); A61B 34/76 (2016.02); A61B 46/20 (2016.02); A61B 50/13 (2016.02); A61B 90/14 (2016.02); A61B 90/37 (2016.02); A61B 90/39 (2016.02); A61B 90/96 (2016.02); A61B 90/98 (2016.02); A61M 5/172 (2013.01); A61N 1/0529 (2013.01); B25J 9/1065 (2013.01); A61B 5/064 (2013.01); A61B 17/17 (2013.01); A61B 90/11 (2016.02); A61B 2010/0208 (2013.01); A61B 2017/00119 (2013.01); A61B 2017/00203 (2013.01); A61B 2017/00207 (2013.01); A61B 2017/00876 (2013.01); A61B 2017/0256 (2013.01); A61B 2034/107 (2016.02); A61B 2034/2051 (2016.02); A61B 2034/2055 (2016.02); A61B 2034/2072 (2016.02); A61B 2034/301 (2016.02); A61B 2034/741 (2016.02); A61B 2034/742 (2016.02); A61B 2034/743 (2016.02); A61B 2034/744 (2016.02); A61B 2090/034 (2016.02); A61B 2090/064 (2016.02); A61B 2090/0811 (2016.02); A61B 2090/365 (2016.02); A61B 2090/374 (2016.02); A61B 2090/378 (2016.02); A61B 2090/3762 (2016.02); A61B 2090/3764 (2016.02); A61B 2090/395 (2016.02); A61B 2090/3937 (2016.02); A61B 2090/3941 (2016.02); A61B 2090/3945 (2016.02); A61B 2090/3966 (2016.02); A61B 2090/3975 (2016.02); A61B 2090/3979 (2016.02); A61B 2090/3983 (2016.02)] 20 Claims
OG exemplary drawing
 
1. A surgical robot system comprising:
a robot base;
a robot arm coupled to the robot base, wherein movement of the robot arm is electronically controlled by a processor;
an end-effector having a first portion and a second portion, the first portion coupled to the robot arm, wherein the second portion of the end-effector includes a guide tube that is positionable at a desired location with respect to a patient's spine to facilitate the performance of a spinal surgery and a plurality of tracking markers for tracking the movement of the end-effector in three dimensions;
a drill bit configured to be received in the guide tube and configured to drill into a bone; and
one or more dilator tubes, each having a handle, the handle configured to be grabbed by a physician for manually pushing the dilator into soft tissue and enlarge a tissue opening,
wherein the one or more dilator tubes are configured to be placed by the guide tube while the end-effector is secured to the robot arm,
wherein the guide tube is moveable along an x, y and z axes, and further moveable along one axis independent of the other axes.