US 11,894,514 B2
Electronic connection in an all-solid state battery at the anode/electrolyte interface
Lawrence G. Scanlon, Fairborn, OH (US); William A Feld, Beavercreek, OH (US); Jacob W Lawson, Springfield, OH (US); and Leah R Lucente, Beavercreek, OH (US)
Assigned to United States of America as represented by the Secretary of the Air Force, Wright-Patterson AFB, OH (US)
Filed by Government of the United States, as represented by the Secretary of the Air Force, Wright-Patterson AFB, OH (US)
Filed on Nov. 12, 2021, as Appl. No. 17/524,794.
Claims priority of provisional application 63/126,179, filed on Dec. 16, 2020.
Prior Publication US 2022/0190383 A1, Jun. 16, 2022
Int. Cl. H01M 10/058 (2010.01); H01M 10/0562 (2010.01)
CPC H01M 10/0562 (2013.01) [H01M 10/058 (2013.01); H01M 2220/30 (2013.01); H01M 2300/0091 (2013.01)] 3 Claims
 
1. A process of making a solid state battery comprising connecting a cathode comprising a surface layer and an interior region, said interior region comprising a phthalocyanine solid-state electrolyte and said surface comprising a layer of phthalocyanine solid-state electrolyte; and an anode, said process comprising the steps of:
a) contacting said cathode's surface layer of phthalocyanine solid-state electrolyte with a mixture of lithium bis(fluorosulfonyl) imide, dimethoxyethane, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether and fluoroethylene carbonate;
b) allowing said mixture of lithium bis(fluorosulfonyl) imide, dimethoxyethane, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether and fluoroethylene carbonate on said cathode's surface layer of phthalocyanine solid-state electrolyte to dry at about 20° C. to about 25° C. for a time of from about 15 minutes to about 25 minutes;
c) contacting said cathode's surface layer of phthalocyanine solid-state electrolyte with a mixture of lithium bis(fluorosulfonyl) imide, dimethoxyethane, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether and fluoroethylene carbonate a second time;
d) contacting said cathode's surface layer of phthalocyanine solid-state electrolyte, said cathode's surface layer of phthalocyanine solid-state electrolyte comprising a coating comprising said mixture of lithium bis(fluorosulfonyl) imide, dimethoxyethane, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether and fluoroethylene carbonate, with said lithium metal anode to form a solid-state battery comprising a lithium metal anode, solid-state electrolyte, and lithiated iron phosphate cathode, said solid-state battery comprising a solid electrolyte interphase that connects said lithium anode and phthalocyanine solid-state electrolyte, said solid electrolyte interphase comprising lithium fluoride and an organic amorphous layer that are reaction products of said lithium bis(fluorosulfonyl) imide, dimethoxyethane, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether and fluoroethylene carbonate; and
e) sealing said solid-state battery in a coin cell.