US 11,859,133 B2
Size-reversing materials for reforming in cyclic flow reactors
Wesley Sattler, Bedminster, NJ (US); Keith R. Hajkowski, Somerset, NJ (US); Changmin Chun, Raritan, NJ (US); Partha Nandi, Annandale, NJ (US); Vera Grankina, Doylestown, PA (US); Joseph E. Gatt, Annandale, NJ (US); Ning Ma, Whitehouse Station, NJ (US); Anastasios Skoulidas, Pittstown, NJ (US); William R. Gunther, Clinton, NJ (US); and Everett J. O'Neal, Asbury, NJ (US)
Assigned to EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY, Annandale, NJ (US)
Filed by ExxonMobil Technology and Engineering Company, Annandale, NJ (US)
Filed on Oct. 7, 2021, as Appl. No. 17/496,644.
Claims priority of provisional application 63/090,880, filed on Oct. 13, 2020.
Prior Publication US 2022/0112432 A1, Apr. 14, 2022
Int. Cl. C10G 11/04 (2006.01); C10G 11/22 (2006.01); B01J 35/04 (2006.01); B01J 21/04 (2006.01); B01J 23/755 (2006.01); B01J 38/12 (2006.01); B01J 8/00 (2006.01); B01J 23/00 (2006.01); B01J 23/10 (2006.01); B01J 23/46 (2006.01); B01J 29/74 (2006.01); B01J 35/00 (2006.01); B01J 35/10 (2006.01); B01J 37/03 (2006.01); B01J 37/04 (2006.01); B01J 37/08 (2006.01); C01B 3/38 (2006.01); C01B 3/40 (2006.01)
CPC C10G 11/04 (2013.01) [B01J 8/008 (2013.01); B01J 21/04 (2013.01); B01J 23/002 (2013.01); B01J 23/10 (2013.01); B01J 23/464 (2013.01); B01J 23/755 (2013.01); B01J 29/74 (2013.01); B01J 35/0006 (2013.01); B01J 35/04 (2013.01); B01J 35/1009 (2013.01); B01J 35/1014 (2013.01); B01J 37/038 (2013.01); B01J 37/04 (2013.01); B01J 37/082 (2013.01); B01J 38/12 (2013.01); C01B 3/382 (2013.01); C01B 3/384 (2013.01); C01B 3/40 (2013.01); C10G 11/22 (2013.01); B01J 2208/00017 (2013.01); B01J 2208/00548 (2013.01); C01B 2203/0233 (2013.01); C01B 2203/0811 (2013.01); C01B 2203/1058 (2013.01); C01B 2203/1064 (2013.01); C10G 2300/70 (2013.01)] 16 Claims
OG exemplary drawing
 
12. A method for reforming hydrocarbons, comprising:
reacting a mixture comprising fuel and 0.1 vol % or more of O2 under combustion conditions in a combustion zone within a reactor to heat one or more surfaces in a reaction zone to a regenerated surface temperature of 1100° C. or more, the reaction zone comprising a catalyst system supported on one or more surfaces of a support structure, the catalyst system comprising i) Ni and Al2O3, ii) NiO and Al2O3, iii) NiAl2O4, or iv) a combination of two or more of i), ii) and iii);
exposing the catalyst system to a gas flow comprising 100 mol % to 250 mol % of a stoichiometric molar amount of O2 for conversion of the molar amount of Ni in the catalyst system from metallic Ni to NiO, NiAl2O4, or a combination thereof;
exposing a reactant stream comprising a reformable hydrocarbon to the one or more surfaces in the reaction zone to increase the temperature of the reactant stream; and
exposing the reactant stream to the catalyst system in the reaction zone at a temperature of 1000° C. or more to form a product stream comprising H2,
wherein the 0.1 vol % or more of O2 comprises an excess of O2 of 20 mol % or more relative to the stoichiometric amount of O2 for combustion of the fuel, and wherein the exposing the catalyst system to a gas flow comprises exposing the catalyst system to the 0.1 vol % or more of O2.